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ABSTRACT
Here we consider a new class of asymmetric mixture normal distribution and in-
vestigate some of its important properties. Location-scale extension of the proposed
model is also considered and discussed the estimation of its parameters by method
of maximum likelihood. Two real life data sets are considered for illustrating the
usefulness of the model.
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1. Introduction

The normal distribution is the basis of many statistical works and it enjoys a unique
position in probability theory. It is an unavoidable tool for the analysis and inter-
pretation of data. In many practical applications it has been observed that real life
data sets are not symmetric. They exhibit some skewness, therefore do not conform
to the normal distribution, which is popular and easy to be handled. Azzalini (1985)
introduced a new class of distributions namely “the skew normal distribution”, which
is mathematically tractable and includes the normal distribution as a special case.
This family of distributions is well known for modeling and analyzing skewed data.
This distribution has been developed via standard normal probability density function
(p.d.f) and cumulative distribution function (c.d.f) through adding a shape parameter
to regulate skewness, so as to have more flexibility in fitting real life data sets.

Let ϕ(.) and Φ(.) be the p.d.f and c.d.f of a standard normal variate. Then a random
variable X1 is said to follow the skew normal distribution with parameter λ ∈ R =
(−∞,∞) if its probability density function (p.d.f.) h (x;λ) is of the following form.
For x ∈ R,

h (x;λ) = 2ϕ (x) Φ (θ(x)) , (1)
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hereafter, we denoted a distribution with p.d.f. (1) as SND(λ). This distribution has
been studied by several authors such as Azzalini (1986), Henze (1986), Azzalini and
Dalla Valle (1996), Branco and Dey (2001), Kumar and Anusree (2011, 2013, 2014a,b).

The normal and skew normal models are not adequate to describe the situations
of plurimodality. To overcome this drawback Kumar and Anusree (2011) considered a
new class of generalized skew normal distribution as a generalized mixture of standard
normal and skew normal distributions through the following p.d.f in which x ∈ R,
λ ∈ R and β > −1.

h1(x;λ, β) =
2

β + 2
ϕ (x) [1 + βΦ (θ(x))] . (2)

The distribution given in (2) they termed as generalized mixture of standard nor-
mal and skew normal distributions (GMNSND(λ, α)). Clearly GMNSND(λ,−1) is
SN(−λ). In order to develop a more flexible plurimodal asymmetric normal distribu-
tion, Kumar and Anila (2023) developed a generalized form of GMNSND through the
following p. d. f

h2(x;λ, β, α) =
ϕ(x)

β + 2

[
2 + β[Φ(α)]−1Φ (θ(x))

]
. (3)

in which x ∈ R, λ, α ∈ R and β > −1. The distribution given in (3) they termed
as Modified skew generalized normal distributions (MSGND(λ, α, β)). Through the
present paper we consider a generalized version of the skew normal distribution of
Kumar and Anila (2017) which we call “the asymmetric gamma generalized curved
normal distribution (AGGCND)”.

The organization of the paper is as follows. In section 2 we present the definition
and some properties of the AGGCND. In section 3 certain reliability measures such
as reliability function, failure rate, and mean residual life function are derived and
condition for unimodal and plurimodal situations are obtained. In section 4 a location
scale extension of the AGGCND is proposed and derive its important properties such
as characteristic function, mean, variance, measure of skewness and kurtosis, reliability
measures etc. Further in section 5 we discuss the maximum likelihood estimation of
the parameters of extended AGGCND and a real life application of the distribution is
considered in section 6.

2. The asymmetric gamma generalized curved normal distribution

Here we define a new class of generalized skew normal distribution and derive some of
its important properties.

Definition 2.1. A random variable X1 is said to have a asymmetric gamma gener-
alized curved normal distribution if its p.d.f is of the following form, in which x ∈ R,
λ, α, γ ∈ R, and β > −1.

f1(x;λ, β, α, γ) =
ϕ(x)

γ + β

[
γ + β[Φ(α)]−1Φ(θ(x)),

]
(4)

where θ(x) = α
√
1 + λ2 + λx√

1+λ2x2
, for convenience of notation. A distribution with

46



Asian European Journal of Probability and Statistics Kumar C. S.a and G.V. Anilab

λ=10, β=0.6, α=0.2, γ=-0.3

λ=10, β=0.6, α=0.2, γ=-0.4

λ=10, β=0.6, α=0.2, γ=0.1

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1. Probability plots of AGGCND(λ, β, α, γ) for fixed values of λ, β, α and various values of γ.

p.d.f (4) we denoted as AGGCND(λ, β, α, γ).

3. Special Cases

when

(1) γ = 2, AGGCND(λ, β, α, γ) reduces to the asymmetric curved normal distribu-
tion (ACND) of Kumar and Anila (2018).

(2) γ = 0 and α = 0 AGGCND(λ, β, α, γ) reduces to the skew curved normal distri-
bution (SCND) of Arellano-Valle et al. (2004).

(3) β = 0, AGGCND(λ, β, α, γ) reduces to the standard normal distribution.
(4) γ = 2 and α = 0, AGGCND(λ, β, α, γ) reduces to the extended skew curved

normal distribution (ESCND) of Kumar and Anusree (2017).

For some particular choices of α, λ and β the p.d.f. given in (4) of AGGCND(α, λ, β)
is plotted in Figure 1. Now we obtain the following results which gives some structural
properties of the distribution AGGCND.

Proposition 3.1. If X1 has AGGCND(λ, β, α, γ) then Y1 = −X has
AGGCND(−λ, β, α, γ)

Proof. The p.d.f f
(1)
1 (z) of Z1 is

f1(z) = f1(−z;λ, β, α, γ)|
dx

dz
|

=
ϕ(−z)
γ + β

[
γ + β[Φ(α)]−1Φ(θ(−z))

]
= f1(z;−λ, β, α, γ)

Since ϕ(.) is the p. d. f of standard normal variate. Hence Z1 follows
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AGGCND(−λ, β, α, γ).

Proposition 3.2. If X1 has AGGCND(λ, β, α, γ) then Z2 = X2
1 has a p.d.f (5) in

which ∆1(z) = Φ (θ(z)) + Φ (θ(−z)).

Proof. The p.d.f. f
(2)
1 (z) of Z2 = X2

1 is the following, for z > 0.

f1(z) = f1(
√
z, λ, β, α, γ)|dx

dz
|+ f1(−

√
z, λ, β, α, γ)|dx

dz
|

=
ϕ(
√
z)

γ + β

[
γ + β[Φ(α)]−1Φ(θ(

√
z))
] 1

2
√
y2

+

ϕ(−
√
z)

γ + β

[
γ + β[Φ(α)]−1Φ(θ(−

√
z))
] 1

2
√
z

=
ϕ(
√
z)

2(γ + β)
√
z

[
2γ + β[Φ(α)]−1

{
Φ(θ(

√
z)) + Φ(θ(−

√
z))
}]

=

(
ϕ(
√
y2)

2
√
z

)
1

(γ + β)

[
2γ + β[Φ(α)]−1∆(

√
z)
]

(5)

Proposition 3.3. If X1 has AGGCND(λ, β, α, γ) then Z3 = |X1| has a p.d.f (6) in
which ∆1(z) as defined in Result 3.2.

Proof. For x > 0, the p.d.f of f
(3)
1 (x) of Z3 is

f1(z) = f1(z;λ, β, α, γ)|
dx

dz
|+ f1(−z;λ, β, α, γ)|

dx

dz
|

=
ϕ(z)

γ + β

[
γ + β[Φ(α)]−1Φ(θ(z))

]
+
ϕ(−z)
γ + β

[
γ + β[Φ(α)]−1Φ(θ(−z))

]
=

ϕ(z)

γ + β

[
2γ + β[Φ(α)]−1 {Φ(θ(z)) + ϕ(θ(−z))}

]
=

ϕ(z)

γ + β

[
2γ + β[Φ(α)]−1∆1(z)

]
(6)

Proposition 3.4. The cumulative distribution function (c.d.f) F1(x) of
AGGCND(λ, β, α, γ) with p.d.f (4) is the following, for x ∈ R.

F (x) =
ϕ(x)

γ + β

[
γ +

β

2
[Φ(α)]−1

]
− β[Φ(α)]−1

γ + β
ξ0(x, θ(t)) (7)

where ξ0(x, θ(t)) =
∫∞
x

∫ θ(t)
0 ϕ (t)ϕ (u) dudt, which can be evaluated using the softwares

such as MATHCAD, MATHEMATICA etc.
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Proof.

f1(x) =

∫ x

−∞
f1(t;λ, β, α, γ)dt

=
γ

γ + β
Φ(x) +

β[Φ(α)]−1

γ + β

[
Φ(x)

2
−
∫ ∞

x

∫ θ(t)

0
ϕ(t)ϕ(u)dudt

]

=
Φ(x)

γ + β

[
γ +

β

2
[Φ(α)]−1

]
− β[Φ(α)]−1

γ + β
ξ0(x, θ(t))

Now we derive the characteristic function of AGGCND(λ, β, α, γ). For that we need
the following lemma which is taken from Ellison (1964).

Lemma 3.5. For a standard normal random variable X1 with distribution function
Φ(.), we have the following for all a, b ∈ R

E {Φ(aX + b)} = Φ

{
b√

1 + a2

}
Proposition 3.6. The characteristic function ϕX1

(t) of AGGCND(λ, β, α, γ) with
p.d.f (4) is the following, for t ∈ R and i =

√
−1.

ϕX(t) =
e

−t2

2

γ + β

[
γ + β[Φ(α)]−1E[Φ(θ(u+ it))]

]
(8)

Proof. Let X1 follows AGGCND(λ, β, α, γ) with p.d.f (4). Then by the definition of
characteristic function, we have the following for any t ∈ R and i =

√
−1

ϕX1
(t) = E(eitX)

=
γ

γ + β

∫ ∞

−∞
eitxϕ(x)dx+

β[Φ(α)]−1

γ + β

∫ ∞

−∞
eitxϕ(x)Φ(θ(x))dx

=
e

−t2

2

γ + β

{
γ + β[Φ(α)]−1

∫ ∞

−∞

1√
2π
e

−(x−it)2

2 Φ(θ(x))dx

}
(9)

On substituting x− it = u, in (9) we obtain

ϕX1
(t) =

e
−t2

2

γ + β

[
γ + β[Φ(α)]−1E[Φ(θ(u+ it))]

]
which implies (8).

4. Moments

The expression for even moments and odd moments of AGGCND(λ, β, α, γ) are ob-
tained through the following results.
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Proposition 4.1. If X1 follows AGGCND(λ, β, α, γ), then for k=1,2,...,

E(X2k) =
2k+

1

2

(γ + β)
√
2π

Γ(k +
1

2
) +

β[Φ(α)]−1

2(γ + β)
Ak(λ, β), (10)

in which

Ak(λ, β) =

∫ ∞

0
uk−

1

2ϕ(
√
u)Φ

(
θ(
√
u)
)
du,

which can be easily evaluated by using the softwares such as MATHCAD, MATHE-
MATICA etc.

Proof. By the definition of raw moments, for any k ≥ 0,

E(X2k
1 ) =

∫ ∞

−∞
x2kf1(x;λ, α, β)dx. (11)

On substituting x2 = u in (11) we obtain the following ,

E(X2k
1 ) =

1

γ + β

∫ ∞

0
ukϕ(

√
u)

1√
u
du +

β[Φ(α)]−1

2(γ + β)∫ ∞

0
ukϕ(

√
u)Φ

(
θ(
√
u)
) 1√

u
du

=
1

(γ + β)

[∫ ∞

0
uk−

1

2ϕ(
√
u)du+

β[Φ(α)]−1

2

uk−
1

2ϕ(
√
u)Φ

(
θ(
√
u)
)]
du,

which leads to (10).

Proposition 4.2. If X1 follows AGGCND(λ, α, β), then for k=0,1,2,...,

E(X2k+1
1 ) =

2k+1

(γ + β)
√
2π

Γ(k + 1) +
β[Φ(α)]−1

2(γ + β)
Bk(λ, β), (12)

in which

Bk(λ, β) =

∫ ∞

0
ukϕ(

√
u)Φ

(
θ(
√
u)
)
du,

which can be easily evaluated using the softwares such as MATHCAD, MATHEMAT-
ICA etc.

Proof. By definition of raw moments,

E(X2k+1
1 ) =

∫ ∞

−∞
x2k+1f(x;λ, β, α, γ)dx. (13)
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On substituting x2 = u in (13) we get,

E(X2k+1
1 ) =

1

γ + β

∫ ∞

0
uk+

1

2ϕ(
√
u)

1√
u
du +

β[Φ(α)]−1

2(γ + β)∫ ∞

0
uk+

1

2ϕ(
√
u)Φ

(
θ(
√
u)
) 1√

u
du

=
1

(γ + β)

[∫ ∞

0
ukϕ(

√
u)du+

β[Φ(α)]−1

2∫ ∞

0
ukϕ(

√
u)Φ

(
θ(
√
u)
)]
du,

which leads to (12).

5. Reliability measures and Mode

Here we investigate some properties of AGGCND(λ, β, α, γ) with p.d.f. (4) useful in
reliability studies.

Let X1 follows AGGCND(λ, β, α, γ) with p.d.f (4). Now from the definition of re-
liability function R(t), failure rate r(t) and mean residual life function µ(t) of X1 we
obtain the following results.

Proposition 5.1. The reliability function R(t) of X1 is the following, in which
ξ0(t, θ(x)) is as defined in Result 3.4.

R (t) =
1

γ + β
[1− Φ(t)]

{
γ +

β[Φ(α)]−1

2

}
+
β[Φ(α)]−1

γ + β
ξ0(t, θ(x))

Proposition 5.2. The failure rate r(t) of X1 is given by,

r (t) =
ϕ(t)

[
γ + β[Φ(α)]−1Φ(θ(t))

]
(1− Φ(t))

[
γ + β[Φ(α)]−1

2

]
+ β[Φ(α)]−1ξ0(t, θ(x))

The failure rate plots of the AGGCND(λ, β, α, γ) for different values of γ are plotted
given in Figure 2.
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Figure 2. Failure rate plots of the AGGCND(λ, β, α, γ) for fixed values of λ, β, α and various values of γ.
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The failure rate plot of the AGGCND(λ, β, α, γ) is presented in Figure 2. From the
figure, one can observe that the failure rate plot of the AGGCND(λ, β, α, γ) has an
increasing failure rate for λ > 0, α < 0, β > 0 and γ > 0, while it exhibits an increasing
and decreasing failure rate function for λ < 0 and α < 0, β < 0, γ < 0.

Proposition 5.3. The mean residual life function of AGGCND(λ, α, β, γ) is

µ(t) =
1

(γ + β)R(t)

[
γϕ(t) + β[Φ(α)]−1Φ (θ(t))ϕ(t) + Φ(α)]−1Λβ(t;λ)

]
− t (14)

where

Λβ(t;λ) =

∫ ∞

t
ϕ(x)

[
d

dx

(∫ θ(x)

0
ϕ(u)du

)]
dx

Proof. By definition, the mean residual life function (MRLF) of X1 is given by

µ(t) = E(X1 − t|X1 > t) (15)

= E(X1|X1 > t)− t,

where

E(X1|X1 > t) =
γ

R(t)(γ + β)

∫ ∞

t
xϕ(x)dx (16)

+
β[Φ(α)]−1

R(t)

∫ ∞

t
xϕ(x)Φ (θ(x)) dx.

Since ϕ(.) is the p.d.f of standard normal variate ϕ
′
(x) = −xϕ(x). Therefore (16)

becomes,

E(X1|X1 > t) =
γ

(γ + β)R(t)

∫ ∞

t
−ϕ′

(x)dx (17)

+
β[Φ(α)]−1

(γ + β)R(t)

∫ ∞

t
−ϕ′

(x)Φ (θ(x)) dx.

On integrating (17), we obtain the following

E(X1|X1 > t) =
γ

(γ + β)R(t)
ϕ(t) +

β[Φ(α)]−1

(γ + β)R(t)
(−Φ(θ(x))ϕ(x))∞t

− β[Φ(α)]−1

R(t)(γ + β)

∞∫
t

−ϕ(x)

[
d

dx

(∫ θ(x)

−∞
ϕ(u)du

)]
dx

(18)

On solving (18) and substituting in (17), we get (14).
The functions R(t), r(t) and µ(t) are equivalent in the sense that if one of them is

given, the other two can be uniquely determined.

Proposition 5.4. Case 1: For x > 0 the p.d.f of AGGCND(λ, α, β, γ)) is log concave
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(i) if λ < 0 provided for all β ≥ 0, α > 0 andγ > 0 and
(ii) if λ > 0, provided |A1 +A2| < |1 +A3|,

where A1, A2 and A3 are as defined in (19), (20) and (21).
Case 2: For x < 0 the p.d.f of AGGCND(λ, α, β, γ)) is log concave

(i) if λ > 0 provided for all β ≥ 0, α > 0 and γ > 0 and
(ii) if λ < 0 provided |A1 +A2| < |1 +A3|.

Proof. To establish ln[f1(x;λ, α, β, γ)] is a concave function of X1, it is enough to
show that its second derivative is negative for all X1. Then

d

dx
{ln [f1(x;λ, α, β, γ)]} = −x+

β[Φ(α)]−1θ
′
(x)ϕ(θ(x))

γ + β[Φ(α)]−1Φ(θ(x))

and

d2

dx2
{ln[f1(x;λ, α, β, γ)]} = −1−A1 −A2 +A3

where

A1 =
β[Φ(α)]−1(θ

′
(x))2θ(x)ϕ(θ(x))

γ + β[Φ(α)]−1Φ(θ(x))
(19)

A2 =
β2[Φ(α)]−2(ϕ(θ(x)))2(θ

′
(x))2

(γ + β[Φ(α)]−1Φ(θ(x)))2
(20)

A3 =
β[Φ(α)]−1ϕ(θ(x))θ

′′
(x)

γ + β[Φ(α)]−1Φ(θ(x))
(21)

Note that Φ(θ(x)) and ϕ(θ(x)) are positive for all x ∈ R and hence A1 > 0 for x > 0,
β > 0 and γ > 0 or x < 0, β < 0 and γ < 0 and A3 > 0 for β > 0, α > 0 and
γ > 0 or β < 0, α < 0 and γ < 0 . Clearly A2 > 0 for all values of β, α, λ, γ. Also
γ+β[Φ(α)]−1Φ(θ(x)) is positive for all values of β, α, γ and λ . Hence (4) is log concave
in these situations.

As a consequence of Result 5.4, we have the following results regarding the uni-
modality and plurimodality of the AGGCND(λ, α, β, γ)).

Proposition 5.5. AGGCND(λ, β, α, γ) density is strongly unimodal under the fol-
lowing two cases.
Case 1: For x > 0

(i) if λ < 0 provided for all β ≥ 0, α > 0 andγ > 0 and
(ii) if λ > 0, provided |A1 +A2| < |1 +A3|,,

Case 2: For x < 0 the p.d.f of AGGCND(λ, α, β, γ)) is unimodal

(i) if λ > 0 provided for all β ≥ 0, α > 0 and γ > 0 and
(ii) if λ < 0 provided |A1 +A2| < |1 +A3|.

Proposition 5.6. AGGCND(λ, β, α, γ) density is plurimodal under the following two
cases.
Case 1: For x > 0
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(i) if λ < 0 provided for all β > 0, α > 0 and γ < 0 and
(ii) if λ > 0, β > 0, α > 0 and γ < 0 provided |A1 +A2| > |1 +A3|,

Case 2: For x < 0 the p.d.f of AGGCND(λ, α, β, γ)) is plurimodal

(i) if λ < 0 provided for all β < 0, α < 0 and γ < 0 and
(ii) if λ > 0, β > 0 and γ > 0 provided |A1 +A2| > |1 +A3|.

6. Extended AGGCND

In this section we discuss an extended form of AGGCND(λ, α, β, γ) by introducing
the location parameter µ and scale parameter σ.

Definition 6.1. Let X1 ∼ AGGCND(λ, α, β, γ)) with p.d.f given in (4). Then Y1 =
µ + σX1 is said to have an extended AGGCND with µ, σ, λ, β, α and γ with the
following p.d.f

f∗1 (y, µ, σ;λ, α, β, γ) =
1

σ(γ + β)
ϕ

(
y − µ

σ

)[
γ + β[Φ(α)]−1Φ (θ∗(y))

]
, (22)

where θ∗(y) = α
√
1 + λ + λ(y−µ)√

σ2+λ2(y−µ)2
in which y ∈ R, µ ∈ R, σ > 0,

λ ∈ R, γ ∈ R, α ∈ R and β > −1. A distribution with p.d.f (22) is denoted as
EAGGCND(µ, σ;λ, α, β, γ).

Now we have the following results. The proof of these results are similar to the
results given in AGGCND(λ, α, β, γ) and hence omitted.

Proposition 6.2. The c.d.f f1(x) of EAGGCND(µ, σ;λ, α, β, γ) with p.d.f (22) is the
following, for y ∈ R.

F ∗(y) =
Φ
(y−µ

σ

)
σ(γ + β)

[
γ +

β

2
[Φ(α)]−1

]
− β[Φ(α)]−1

σ(γ + β)
ξ∗0(y, θ

∗(t))

where ξ∗0(y, θ
∗(t)) is as defined in Result 3.4.

Proposition 6.3. The characteristic function of EAGGCND(µ, σ;λ, α, β, γ) is given
by

ψY1
(t) =

1

σ(γ + β)
eitµ−

t2σ2

2

{
γ + β[Φ(α)]−1E [Φ(θ∗(z))]

}
,

where θ∗(z) = β
√
1 + λ+ λ(z+σ2it)√

σ2+λ2(z+σ2it)2

Proposition 6.4. The reliability function R∗(t) of Y is the following, in which
ξ∗0(t, θ

∗(y)) is as defined in Result 3.4.

R∗(t) =
1

γ + β

[
1− Φ

(
t− µ

σ

)]{
γ +

β[Φ(α)]−1

2

}
+
β[Φ(α)]−1

γ + β
ξ∗0(t, θ

∗(y))

Proposition 6.5. The failure rate r∗(t) of Y1 is given by
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r∗(t) =
ϕ
( t−µ

σ

) [
γ + β[Φ(α)]−1Φ (θ∗(t))

][
1− Φ( t−µ

σ )
] {
γ + β[Φ(α)]−1

2

}
+ β[Φ(α)]−1ξ∗0(t, θ

∗(y))
.

7. Maximum likelihood estimation

The log likelihood function, ln L of the random sample of size n from a population
following EAGGCND(µ, σ;λ, α, β, γ) is the following in which c = −n

2 ln 2π

lnL = c− nln(γ + β)− nlnσ − 1

2

n∑
i=1

(yi − µ)2

σ2

+

n∑
i=1

ln
(
γ + β [Φ(α)]−1Φ (θ∗(yi))

)
(23)

On differentiating (23) with respect to parameters µ, σ, λ, β, α and γ and then equating
to zero, we obtain the following normal equations.

n∑
i=1

(yi − µ)

σ2
− β[Φ(α)]−1

n∑
i=1

ϕ (θ∗(yi))

(
λ3(yi−µ)2

[σ2+λ2(yi−µ)2]
3
2
− λ√

λ2(yi−µ)2+σ2

)
γ + β[Φ(α)]−1Φ (θ∗(yi))

= 0 (24)

n∑
i=1

(yi − µ)2

σ3
− β[Φ(α)]−1

n∑
i=1

ϕ (θ∗(yi)) (yi − µ)
(

λ(yi−µ)σ
(σ2+λ2(yi−µ)2) 3

2

)
γ + β[Φ(α)]−1Φ (θ∗(yi))

=
n

σ
(25)

β[Φ(α)]−1
n∑

i=1

ϕ (θ∗(yi))

[
αλ√
1+λ2

− λ2(yi−µ)3

(σ2+λ2(yi−µ))
3
2

yi−µ√
σ2+λ2(yi−µ)2

]
γ + β[Φ(α)]−1Φ (θ∗(yi))

= 0 (26)

[Φ(α)]−1
n∑

i=1

Φ (θ∗(yi))

γ + β[Φ(α)]−1Φ (θ∗(yi))
=

n

γ + β
(27)

β[Φ(α)]−1
n∑

i=1

[
ϕ(θ∗(yi))

√
1 + λ2 − Φ(θ∗(yi))[Φ(α)]

−1ϕ(α)

γ + β[Φ(α)]−1Φ (θ∗(yi))

]
= 0 (28)

and

n∑
i=1

1

γ + β[Φ(α)]−1Φ (θ∗(yi))
=

n

γ + β
. (29)
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On solving the equations (24) to (29) we get the maximum likelihood estimate(MLE)
of the parameters of EAGGCND(µ, σ;λ, α, β, γ).

8. Data Illustration

In this section we consider a real life data applications of the EAGGCND. The data
set is taken from Cook and Weisberg (1994) which is based on the body mass index
(BMI) values for the 50 females and is given below Data set 1:
24.47 23.99 26.24 20.04 25.72 25.64 19.87 23.35 22.42 20.42 22.13 25.17 23.72
21.28 20.87 19.00 22.04 20.12 21.35 28.57 26.95 28.13 26.85 25.27 31.93 16.75
19.54 20.42 22.76 20.12 22.35 19.16 20.77 19.37 22.37 17.54 19.06 20.30 20.15
25.36 22.12 21.25 20.53 17.06 18.29 18.37 18.93 17.79 17.05 20.31.
For illustrating the suitability of the model, we have fitted EAGGCND(µ, σ; λ, β, α, γ)
to the above data set and computed the Kolmogorov Smirnov Statistic (KSS) values,
Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), Cor-
rected Akaike’s Information Criterion (AICc) values. All these numerical results ob-
tained are presented in Table 1.

Table 1. Estimated values of the parameters for the model: EAGGCND(µ, σ; λ, β, α, γ), EACND

(µ, σ;λ, β, α) and EGSCND(µ, σ; λ, β, α, γ) with respective values of KSS, AIC, BIC and AICc.

Data sets Estimates of ESCND(µ, σ;λ, β) EACND (µ, σ;λ, β, α) EAGGCND(µ, σ;λ, β, α, γ)

the parameters
1 µ̂ 21.01 20.86 21.6

σ̂ 3.3004 3.33 3.3

λ̂ 10.001 8.231 6.36

β̂ 2.197 0.562 0.21
α̂ - 19.314 5.05
γ̂ - - 9.3

KSS Statistic 0.182 0.139 0.09
P-value 0.062 0.261 0.777
AIC 278.349 275.938 273.622
BIC 285.997 285.498 284.094
AICc 279.238 277.302 275.575

From Table 1, it is clear that the EAGGCND(µ, σ;λ, α, β, γ) is a more appropriate
model to all the data sets considered in this paper compared to the existing models
ESCND(µ, σ;λ, β), EACND (µ, σ;λ, β, α). Thus, the model discussed in this paper
provides more flexibility in modeling perspectives due to the presence of extra param-
eter. Also, we have plotted the histogram of data set 1 along with the fitted probability
plots corresponding to the ESCND,EACND and EAGGCND in the figure 3. From
the figure it can be seen that the EAGGCND yields a better fit compared to the
existing models ESCND and EACND in case of the above data set.
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Figure 3. Histogram of Data set 1 and fitted distributions

.

9. Generalized likelihood ratio test (GLRT)

In this section, we discuss the generalized likelihood ratio test (GLRT) procedure for
testing the significance of the additional parameter of the model.

(1) H
(1)
0 : λ2 = 0

(2) H
(2)
0 : λ2 = 0 and β = 0

(3) H
(3)
0 : α = 0 and β = 0.

The test statistic is

−2lnΛ(x) = 2[lnL(Θ̂;x)− lnL(Θ̂∗;x)], (30)

where Θ̂ is the maximum likelihood estimator of Θ = (µ, σ;λ, α, β, γ) with no restric-

tions, and Θ̂∗ is the maximum likelihood estimator for Θ under the null hypothesis
H0. The test statistic given in (30) follows chi-square distribution with 1 degrees of
freedom (d.f) for those hypotheses having one parameter restriction and two d.f for
those hypotheses having two parameter restrictions. The results based on GLRT are
given in Table 2.

Table 2. Computed values of lnL(Θ̂;x), lnL(Θ̂∗;x), GLRT statistics and P-value of EAGGCND

Data set lnL(Θ̂∗;x) lnL(Θ̂;x) GLRT d.f Chi-square value P-value
Test 1 -133.328 -130.811 5.033 1 3.85 0.024
Test 2 -135.175 -130.811 8.727 2 5.99 0.0127

Now by adopting the test procedure discussed in section 9, we testH0 : γ = 2 against
the alternative hypothesis H1 : γ ̸= 2 against the alternative hypothesis H1 : α ̸= 0
and γ ̸= 2. The numerical results obtained are given in Table 2. Based on the computed
values of GLRT and its P-value from Table 2, one can observe that the null hypothesis
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is rejected in the case of the above data sets, which indicates the suitability of the
model EAGGCND to the dataset considered in this paper.

10. Simulation Study

In order to assess the performance of the maximum likelihood estimators of the pa-
rameters of the EAGGCND(µ, σ;λ1, λ2, α, β, γ), we have conducted a brief simulation
study by generating observations with the help of MATHEMATICA for the following
sets of parameters µ = 21.6, σ = 3.3, λ = 6.36, β = 0.21, α = 5.05 and γ = 9.3. We
have considered 200 bootstrap samples of sizes 20, 50, 100 and 500 from the EAG-
GCND for comparing the performances of the maximum likelihood estimators. The
likelihood estimates of the parameters, the average bias estimates and average MSEs
over 200 replications are calculated and presented in Table 3.

Table 3. Estimates of the parameters and corresponding bias and MSEs of EGAMND based on simulated

data sets corresponding to parameter setµ = 21.6, σ = 3.3, λ = 6.36, β = 0.21, α = 5.05 and γ = 9.3.

Simulated Sample size Parameter Set Estimate Bias MSE
Data Sets
(1) 20 µ̂ 21.575 -0.024 0.00059

σ̂ 3.12 -0.178 0.0318

λ̂ 6.36 0.009 8.1e-05

β̂ 0.29 0.08 0.0064
α̂ 5.089 0.039 0.0015
γ̂ 9.39 0.089 0.008

50 µ̂ 21.585 -0.014 0.00019
σ̂ 3.179 ] -0.12 0.0141

λ̂ 6.367 0.007 4.9e-05

β̂ 0.27 0.06 0.0036
α̂ 5.069 0.019 0.00039
γ̂ 9.37 0.069 0.0048

100 µ̂ 21.589 -0.01 0.0001
σ̂ 3.278 -0.021 0.00047

λ̂ 6.364 0.004 1.6e-05

β̂ 0.24 0.03 0.0009
α̂ 5.039 -0.01 0.0001
γ̂ 9.34 0.039 0.0015

500 µ̂ 21.592 -0.007 4.944e-05
σ̂ 3.296 -0.0033 1.127e-05

λ̂ 6.359 -0.001 1e-06

β̂ 0.22 0.01 0.0001
α̂ 5.05 0.0089 8.098e-05
γ̂ 9.29 -0.01 0.0001

From Table 3, it can be observed that both the bias and MSE are in decreasing
order as sample size increases.
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